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The stability of a nonuniformly aging viscoelastic rod is investigated. The 
critical force is determined in terms of parameters of the rod in the case of 

infinite time interval. Critical time estimates are presented for the problem 
covering a finite time interval, 

The investigation of stability of viscoelastic rods is dealt with in a number of 

publications. The majority of these relate to stability of the axially compressed 

rod (bibliography and survey of these publications appeared in, e. g. t [l--5] ), There 

are several essentially different formulations of the problem of stability of viscoelastic 
rods. Thus for rods of materials with limited creep properties the problem usually 
concerns the determination of continuous critical loading over an infinitely long inter- 

val. If the deflection of a viscoelastic rod is limited at all times, its deformation is 
called stable. If, however, the deflection, as a function of time, becomes at some 
point unlimited, the rod is called unstable. One of the problems of stability over a 
specified finite time interval is the determination of the initial deflection limits whose 
fulfilment ensures that the deflection determined by it does not exceed a certain value. 
The formulated problems of stability over finite time intervals are based on the defini- 
tions of stability of motion of dynamic systems proposed by Chetaev [6]. A survey and 

bibliography of publications dealing with technical stability of motion are given in 

I?, 81. 
Below, we investigate the stability of rods whose properties are defined by equa- 

tions of the theory of viscoelasticity of nonuniformly aging bodies [9-121. 

On the model of a nonuniformly aging visco- 
e 1 a s t i c b o d y. The model of a nonuniformly aging viscoelastic body whose 

elastic and rhealogical properties vary with time is charactetised by its specific in- 

homogeneity. This inhomogeneity is due to the fact that the aging process is not uni- 
form in all elements of such bodies, which makes the age of material generally depend- 
ent on space coordinates. The variability of the age of material determines, in turn, 
the form of functions that define the properties of a viscoelastic body in terms of time 
and space coordinates. 

The equations of state for such model of the viscoelastic body, which take into 
account the dependence of the age of material on space coordinates, can be obtained 

on the basis of [9]. Denoting by ~0 the instant of stress application to an element 
of the viscoelastic body in the neighborhood of point 7 = (x1, x2, sa) a and by Q* = 
zl* (r) the instant of production generation of that element. The instant of observa- 

tion is denoted by t (absolute time), with the reference point for time selected arbit- 
rarily. Let %1 = z1 (r) be the age of a material element in the neighborhood of 
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point r = (xl, q,, za) of the considered body at instant 
obviously have 

759 

r0 of stress application, We 

(0.1) 

The equation of state that links the strain e2 (t) and the stress uz (t) in a nonuni- 
formly aging viscoelastic body subjected to uniaxial stress is, then, of the form 

6, (t) 
t 

‘, ct) = E (1 _ qty - G, (z) K (t - zl*, T - T,*) dz (0.2) 
To 

K (t, z) = -& a 
[ 

1 
A(t,z) ==x E(t) +N(~,T) 1 (0.3) 

where K (t, 7) is the creep kernel for such body, i.e. when rr* (5) - o, E (t) is 
the variable modulus of instantaneous elastic strain, and N (t, T) is the measure of 

creep of the material. 
We substitute in Eq. (0.2) the age r1 (r) of a material element at instant r. 

of stress application for the age rr* (r) at the instant of its production(generation). For 
simplicity we assume that in a uniaxial stress state the age rr of the material dep- 
ends only on one coordinate z . We select for definiteness the instant of production 
(generation)of the viscoelastic body element at the coordinate z = 0 as the time 
reference point, and introduce the age p (5) of the element. (Function P (x) of 
nonuniform aging defines the dependence of the age of material of an aging viscoelas- 
tic body on coordinates ). 

Taking the aforesaid and (0.1) into account we represent the equation of state in 
the form 

b, (1) 
1 

ex w = E [t + p (z)] - s 6,(r) K It + P (z), r + P @)I dr (0.4) 
To 

If the instants of stress application to various elements of the viscoelastic body are 
different, i. e. z. = z. (5) , the equation of state is of the form 

a, (t) 
t 

% !t) = r: [t - z,*(z)] - s 
CT, (7) K [t - I~* (z), t -z,* (s)] c-h (0.5) 

G(z) 

Function zl* = zr* (2) represents the instant of generation of the element at coord- 
inate 5, and function r. = $, I$) defines the instant of stress application to that 

element. Obviously zr* (I) < r. (z). 
The equations of state (0.4) and (0.5) are the determinining relations for the creep 

of nonuniformly aging bodies in a uniaxial state of stress when the strains do not ex- 

ceed the proportionality limit. The equations of state for the general case of three- 
dimensional state of stress with strains, although small but exceeding the proportion- 

ality limit, appear in [g-11]. 
For a constant modulus of instantaneous elastic strain the kernel is of the form 

K (t, T) = aN (t, 7) / a~. According to [lZ]‘the measure of creep N (t, z) can be 

defined by the formula 

N (t, ‘c) = cp (r) f 0 - 4 (0.6) 

Function cp (r) determines the aging process of the rod material. Expanding function 
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f ft - a) in an ~~n~tial series and retaining in it only the first two terms, we 
obtain 

N (t, z) = 9, ($11 - ,-v(‘-+)I (0.7) 

Equation (0.4 with conditions (0.6) and (0.7) constitute the basis of subsequent investi- 
gation, 

For each fixed x and given strain formula (0.5) is the Volterra integral equation 
of the second hind with respect to stresses (a survey of publications on these equations 
appears in [13] ). If for a fixed J functions K (t - zi* fx), ‘5 - zr* (s)fLs’ It - z,* 1x11 
and e, (t) E (t- z,* (~$1 are square integrable when % (d < b, 1; < T, then Es. 
(0.5) has the unique solution o, (t), ‘co (4 < t 5 2’ which is square integrable, 

1, Stability over an infinite time interval. betus 
consider a nonu~formly aging visooelastic rod whose length can be assumed, without 
loss of generality, to be equal unity. The undeformed rod lies on the Oz -axis. 
At instant t, the longitudinal force P is applied to it. We denote the rod deflec- 
tion measured from the compressive force line of action at point z at instant of time 

t213.0, It is assumed that at the instant of time t,-0 immediately preceding 
the application of force the rod had an initial deflection y, (z), i. e. 

Y &l - 0, I4 I= (Yo b-4 (1.1) 

where functions y, (x) is given and has two continuous derivatives with respect to 
2 E co, 11. 

We call the rod stable, if its deflection defined in terms of t and z is bounded, 
i. e. 

(1.2) 

We further assume that the longitudinal strain distribution over the rod section conforms 
to the law of plane sections. By virtue of (0.4) the equation for the deflection y (t, x) 
of the viscoelastic rod of nonuniformly aging material is of the form 

(1.3) 

t 

S Y (‘t’* 4 $$- [a, (z -j- p (x)) (1 - e-r+T))] dz] = “:=r’ 
to 

where the positive bounded ~ont~uous function (p (z) approaches, as t+oo, 
some constant c,r > 0 which represents the measure of creep limit of the material 
in its old age; function p(z) is piecewise-continuous and bounded; the specified con- 
stant y>o; E is the modulus of instantaneous elastic strain, and I is the mom- 
ent of inertia of the rod about the lon~~dinal axis. 

The boundary conditions for Eq. (13) are defined by 

The numbers a and @ are specified so that in the elastic problem the differential 
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equation for deflections (i.e. Eq. (1.3) for t = t,) measured from the force action 
line, is of second order. Boundary conditions for specific types of rod fixing are obtain- 
ed by a suitable selection of parameters cc and fi (e.g., a = p = 0 for hinged 
rod ends, cs = 0, f3 = SC 1 2 for a rod with one end rigidly fixed and the other free; 

other possible boundary forms that conform to given constraint types can be found in 

2141). 
Let us transform Eq. (1.3) assuming that function a4y (i?, 2) / d.?dt2 exists and 

is continuous. Differentiating (1.3) twice with respect to t , we obtain 

Boundary conditions for Eq. (1.5) are of the form (1.4). 
One of the initial conditions for t = t, for this equation is obtained by setting 

in (1.3) t = t,. We obtain 

3% (to, XI 
6x2 = --&- y (t@, x) _t * (1.6) 

The second initial condition is obtained by differentiating both parts of (1.3) with res- 

pect to t and making t approach t, , which yields 

PY (to, 4 
azw 

+ p ay (to, $1 
py Y PO? 4 cp 00 + P (4) IE at =- I 

(1.7) 

The conditions of stability are obtained by deriving the solution of problem (1.4)- 
(1. 7), (1.1) in the form of series expansion in eigenvalues of the elastic problem. We 
denote by h, the eigenvalues of the elastic problem and by $r (z) the related 

sequence of eigenfunctions. Functions qn (3) satisfy boundary conditions (1.4) 
throughout which h is to be substituted for y and, also, the equations 

We recall the existence of an infinitely increasing sequence of real eigenvalues 
h, and of the related orthonormal set of eigenfunctions II?, (see [X5] ), with the 

deflection y (t, z) expanding for any t > t, in a u~formly convergent Fourier 

series in 5 E [O, 11 of the form 

?/@,z) = i ~?I(t)~,(~)~ An(t)= 51JkM3ds 
(1.9) 

?I==0 0 

On the assumptions made above about the continuity of derivative d4y (t, r) / &z2Bt2 

series (1.9) may be differentiated twice with respect to t and to x under the sum- 
InatiOn Sign. To prove this we first point out that when 

$Y @, 21, 
at2 = 2 B, (t) $,(2), B,(f) 5, = 5 “ay;;; 9, (4 kc 

n=o 0 
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then, taking into account (1.9), we have the coefficients B,(t) = A, *’ (dots denote 
differentiation with respect to t). Let furthermore 

Then integrating twice by parts we obtain 

en (0) (xl 
~ Y cc 0) - 

However on?he strength 

a-+/ (t, 2) dx 
at2 

0 

1 

I, (2) = hn s &I 11, 2) 
?&(s) -$@--- dx == - h,B, (t) = - h,il,” (t) 

0 

Moreover, from the first of boundary conditions (1.4) we obtain for g and & a 
system of equation in cos CL and sin a, which for any 01 has a nontrivial solution, 
which means that its determinant is zero, i. e. 

Wl, (0) 
Y (f, 0) 7 

aY tt, 0) 
-+o,(o) dx =o 

Similarly 

* (lf * fC *I 4, (1) 
n i3X 

- - y (t, 1) = 0 az 
Hence we conclude that 

The feasibility of differentiating the expression under the summation sign is proved, 
Let us write the equation which determine coefficients A,(t) in expansion (1.9). 

For this we substitute series (1.9) into (1.5). Taking into account (1.8) and the ortho- 
normality of functions j& (r) , we obtain 

[A,** (t> + VA,’ WI P? + YE i Am’ @) Bmn W = 0 (1.10) 
77l=ll 

/AL, = [I-+,]-l, t>to 

a 

Initial conditions for Eq. (1.10) are obtained by substituting (1.9) into (1.6) and (1.7). 
As a result we have 

A, (to) = - A,%,p,,IEP-1 (1. U) 

A,’ @Q) = - YP& j, A, (k,) /&, (to) 
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0 

where -& is the Fourier coefficient of function YO (X). 
kc stability investigations it is reasonable to assume that force P is smaller than 

the Euler’s critical force, i.e. 

P < IEho (1.12) 

where 10 is the minimal eigenvalue of the elastic problem. In what follows we 
assume that condition (1.12) is satisfied. 

On the strength of the Pacceval equality (see [lS] ) the formula 

u(t) = 5 &2(t) = jy2(t,x)dx 
n=o 0 

(1.13) 

is valid, which, in particular, means that the solution A, (t) of the Cauchy problem 

(1. lo), (1.11) can be considered to be an element of the coordinate Hilbect space .&. 
for any t . Note that the existence and uniqueness of solution of the Cauchy problem 

(1. lo), (1.11) was proved in [ll]. 
Using the second Liapunov method we shall now prove that the series u (t) is 

bounded for all t > to. We introduce in the analysis the scalar function V (t) 

v (t) = A:(t) 
?a=0 

whose derivative we shall determine along the trajectory of system (1.10). We have 

V’ (t) = - 2yv (t) - (1.14) 

2yE njo AX’ (0 un i A,’ @) S7?1n @) 
m=o 

We transform the right-hand side of formula (1.14), and represent pmn (t) in 
the form 

Smn (t) = co&l, + Pnln (1.15) 

I%* CL> = $4n Cc) %a (z) (9 (t + P (x)> - co> dJ: 

where &I is the Kconecker delta. 
On the stcength of assumptions about functions cp and p the equality 

lim pm, (t) = 0 (1.16) 
t-Ma 

is uniformly valid with respect to m and n . 
Taking into account (1.15) we obtain 

m m 
(1.17) 
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Then, on the strength of (1.12), we have the inequality 

m 

and on the strength of the Cauchy- Buniakowski inequality we have 

(1.18) 

(1.19) 

v Ct) [ nso i. Pn2Bmn2 (t)]“* = 
v (t) Lnio CL2 I+2 lx) ccp tt + p tx))- co)2 dx j” 

In the last transformation when deriving formula (1.19) we used the Parceval equality 
in the form 

However for large n the asymptotic formula 

h,=n+O($) (1.20) 

is valid (see [15] ). Since in conformity with (1.12) all quantities & are positive, 
it follows from (1.20) and (1.12) that the series 

SP ns= Cl<00 (1.21) 
*=a 

is convergent. The letters Ci (i = 1, 2, . . .) denote in it some positive const- 
ants. From estimate (1.21) and the normalized properties of eigenfunctions & 

follows the identity 

where Cl is defined by formula (1.21). 
The substitution of expressions (1.17), (1.19), and (1.22) into the right-hand 

side of (1.14) yields 

V’ (t) < {-- 2Y U + ECOPOI + 2Y J%I ‘PI w v (t) (1.23) 

Let us now require the expresrion in brackets in the right-hand side of (1.23) to be 
positive. Tbis is achieved when the compressive force P satisfies the condition (3 

*) This was pointed out by A. S. Lozovskii in a particular case. 
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P < -En, (1 + EC,)-’ (1.24) 
We call critical the compre&ve force defined by the right-hand side of (1.24) 

under conditions of continuous loading, 
We shall now establish the boundeduess of function V(t) when t > t, and 

condition (1.24) is satisfied. Note that by virtue of assumptions made about iimctions 
9 and p we have lim,, 4p1 (t) = 0. This means that there exists a ti such 

that for all t> t, and some E > 0 the inequality 

is valid. 
- U -f- EC, pal + J%% (@ G - a 

It is also possible to show that 

aJ<-J, V@o)<@J 
Indeed, by virtue of (X.11) and the Parceval equality 

(1.25) 

n=o 0 

Similarly, using the Cauchy-Bu~ako~~ inequality, the Parceval equality, and form- 
ulas (1.11) and (1. ‘20) we establish that 

(1.26) 

Inequalities (I.. 23) and (1.25) imply the unboundedness of function V (t) in the 
interval [to, $,I. Hence taking into account (1.23) and (1.24) we conclude that a 
constant x > 0 can be found for which 

V(t) < %e-x(f-fal, t > t, (3.27) 

From inequality (1.27) and the definition of function V (t) on the strength of 
(1.25) we have 

f=Pr=,t, u w < 00 

This, with the Pameval equality (1.13), implies that 

supt>f, s ’ y2 (4 4 ds < 00 
0 

(1.28) 

Let us now show that (1.2), i. e. the stability of the viscoelastic rod over an infinite 
time interval, follows from (1.28). We denote by G (5, %) the elastic problem 
Green’s function, i. e, the Green’s function of Fq. (1.3) for cp = Yo = 0 with 
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boundary conditions (1.4). By virtue of (1.3) the following representation is valid: 

Y (t, x) = { G (ST, 8) (i!$& +_ (1.29) 

0 
t 

p 1 Y CT, E) 
to 

-& [‘I‘, (t -I- P Q3) (1 - f?-J+‘r))] dr} cig 

Integration of this equality by parts reduces it to the form 

(1.30) 

in which the first term in the right-hand side is obviously bounded for all t > to. Let 
us estimate the second [term]. Taking into account the Cauchy -Buniakowski inequal- 
ity, the Parceval equality, and formnla (1.27) we obtain 

from which and (1.30) follows (1.2). 
The critical value of the compressive force p in the case considered here is, 

thus, defined by the right-hand side of formula (1.24). It is independent of function 

Q (2) which defines the inhomogeneity of the aging material of the viscoelastic cod. 
Note that the critical value of the compressive force in the case of homogeneous mat- 

erial of such rod. was obtained in [lS], 

R e m a I k 1. Inequality (1.24) represents only the sufficient condition of stabil- 
ity, but by no means the necessary one, since the critical force that satisfies (1.12) 
can exceed the [one defined by the] right-hand side of (1.24) over any finite time 
interval, without impairing the rod stability. To prove this it is sufficients to point 

out that, as implied by (1.23) and (1.25), the [rod] deflection over any finite time 
interval I&, t,] is limited. Hence, if estimate (1.24) holds for t > tI , the inequal- 

ity (1.27) ftom which (1.2) is derived must also hold. 

R e m a r k 2. Let us show that when 
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IEho (1 + EC&-l r; P < EAor (1.32) 

the rod is unstable, i. e. inequality (1.2) is violated. To prove this we write Eq. 

(1.10) for n = 0. From formula (1.15) follows that 

(A,” + y/t,,‘) (I- IEh,P-1) + yEC,A,’ + yE 5 A,’ (1) s,, (t) = 0 (1.33) 
??I=0 

Let us assume that the opposite, i. e. that (1.2) is valid. Then from (1. zs}, (1.2), 
and the Parceval equality we can derive 

suptr_t,v (4 < m 

This together with (I.. 33), (1.32), and (1.16) indicates the existence of an initial 
deflection YO (4 such that the respective coefficient A0 (t) infinitely increases, 
But by virtue of the definition of function A, (t) this contradicts (1.2). This proves 

the rod instability when condition (1.32) is violated. 

2, Stability over a finite time interval, 1”. First, 
we shall investigate the Cproblem of3 rod stability over a finite time interval in the 

following formulation. A finite time interval [to, T] and the number y* > 0 
are specified. We have to determine the constraints on the initial deflection y, (5) 

whose fulfilment results in 

Sup,Snp,iy(G4 I<Y*&,\(~\(T,O<~<~ (2.1) 

The compressive force P is assumed to satisfy the inequality (1.12). 
To determine constraints on the initial deflection we use formula (1.30) where we 

evaluate its separate terms. By virtue of (1.29) 

The substitution of this equality into (1.30) shows that the first integral in the 
right-hand side of (1.30) does not exceed +1 (t) defined by 

To evaluate the second integral in (1.30) we use formula (1.31) in which we 

define more exactly the upper bound of function V (t), t, < t < T. Taking into 
account (1.23) and (1.26), we conclnde that 

(2.3) 

Co (t) = exp f Cb (4 fh 
to 
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where C, (t) is equal to the expression in braces in (1.23). From (2.4) and (1.31) 
we obtain the estimate of the second integral in (1.30). This estimate together with 
(2.2) finally shows that the maximum deflection for t0 < t < T and 0 < z \r 1 

(i.e. the left-hand side of (2.1)) does not exceed 1s defined by 

(2.4) . 
0 to 0 

This means that for any deflection pa (Z) that satisfies the conditionjrs\<y*, condition 
(2.1) is satisfied, i. e. the rod is stable. Note that the derived stability condition de- 

pends on the initial deflection and its second derivative in an integral way only. 
2”. Let us consider the rod stability rproblem] in the following formulation, The 

initial deflection IJO (X) and the number y* > 0 are specified. We have to deter- 
mine the first instant of time t = t1 at which the maximum deflection is equal to 
the critical value y*, i. e. 

max,lyft,r) I=y*,O\(s<i (2.5) 

Since an exact determination of instant t, with the use of condition (2.5) is only 
possible in exceptional cases, hence various estimates of t, are of interest. 

Let us determine the lower bound tl- of instant t, and, by the same token, 

evaluate the Interval ito, t,-1 in which the deflection does not exceed y*- 
We assume that at t = to the left-hand side of (2.5) does not exceed y*. To 

obtain the required estimate we use equality (1.30). The estimate of the first integral 

in (1.30) is derived from formula (2.2). 
The second integral in (1.30) is, in conformity with (2.3) and (1.31) by the func- 

ti0f-i & (t) 
(1/)2 (t> = c2 “f t/o2 (x) dx j cs (s) co @) ds 9 j G (4 v (s) f&G 

0 to to 

We, thus, finally obtain 

sup, I Y ttt 4 I B $1 @I + $2. (4 (2.6) 

where the right-hand side is a monotonically increasing function of t , If we denote 

the root of equation $i (t) + 1)s (t) = y* by t,- , then by virtue of (2.6) we 

have It1 > t,-. 
Note that for specific types of rod end fixing the instant ti can be estimated 

using the method expounded here also in the case of more general functions defining 

the measure of creep, 
Let us illustrate the proposed method with the example of the problem of stability 

of a nonuniformly aging viscoelastic rod with one end fixed and the other free. 
The equation for the deflection Y (t, z) is of the form 

where the measure of creep N (t, T) is bounded, monotonically increasing with t 
for any iixed a, monotonically decreasing with z for fixed t and IV (t, C) = 0. 
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We assume that the second derivative of the initial deflection y. (x) is nonpositive. 
From this and (2.7) follows that the deflection y (t, Z) is convex with respect to z 
for any fixed t. Hence, owing to the boundary conditions (2.7), the maximum de- 
flection y (t, X) occurs at 5 = 1. 

Using Green’s function of the elastic problem and taking into account (2.7), we 
obtain for y (t, 5) the expression 

1 

Y (t, 1) = 1 K (s) i 0, s) ds (2.8) 
0 

K(S)=-~tgacos0(1 - s) + + sin 0 (1 - s) 

02 = P/I 
t 

d2Yo (4 
f (6 s) = 1 Y @, 4 & 0 + P (s), r + P (4) df + L as2 

to 
By virtue of (2.8) the following inequality is valid: 

t 

KI (t, ~1 = 
SI 

-& iv 0 + P (s), r + P (s)) K ($1 1 ds 

0 

(2.9) 

(2.10) 

K2 = 
0 

Let us now construct function 9s (t) in the form of the sum of series 

4’s 0) = K2 (I+ ‘s KI (tt f) dz + 5 KI (4 r) 

to to 
j K1 CG ~1) 4 + . . .) 

0 

(2.11) 

Note that according to (2.10) series (2.11) is absolutely and uniformly convergent. 

Integration of the right-hand side of (2.9) yields Y (t, 1) < $a (4. Hence the root 

t1 of equation 9s (t) = $ represents the lower bound of the critical time 
tr- < t,. 
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